To cool down gases of atoms or molecules into the quantum regime, intricate setups of lasers are required.
To cool down gases of atoms or molecules into the quantum regime, intricate setups of lasers are required. What does it mean when we say that something is extremely cold? A physicist's answer would be: this means that atoms and molecules barely move. For several decades now, physicists have been developing techniques to create such ultracold states of matter, using lasers to bring gases into the regime where quantum mechanics reigns. In a new 'Insight' issue of Nature Physics, UvA-physicists describe the developments in this nearly motionless yet very exciting world. Slowing down an atom or a molecule so that it becomes part of an extremely cold substance is not straightforward. One cannot simply grab individual moving particles and force them to hold still. In the 1970s and 1980s, techniques were developed that do enable one to cool atoms in vacuum: using carefully tuned beams of laser light, the motion of particles can gradually be eliminated.
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.